

Atmospheric Infrared Sounder

Changes To AIRS Level 1 Software For V6 Part 1 Overview

Denis Elliott

October 16, 2009

Copyright 2009
California Institute of Technology
Government sponsorship acknowledged

L1 V6 Changes Overview NASA Sounder Science Meeting October 13–16, 2009, Greenbelt MD

Introduction

- For V6, both radiometric and spectral calibration improvements are being made
 - Radiometric Tom Pagano and Margie Weiler
 - Spectral—Larrabee Strow, George Aumann,
 Scott Hannon, Evan Manning, et. al.
- All planned changes are small, and an <u>unchanged</u>
 L1B remains the primary AIRS radiance product
 - Neither the spectral nor the radiometric changes are significant for weather prediction, but both can be important for climate studies
- Changes have been wrapped up into a new Level
 1C program and an updated RTA for Level 2

Outline

- Rationale for the changes and high-level description
 - Radiometric
 - Spectral
- Revised PGE structure at GES DISC
- Standalone programs
- Following two talks
 - Evan Manning will describe program usage
 - Larrabee Strow will describe technical details

Radiometric changes (Tom Pagano and Margie Weiler)

- The AIRS absolute radiometric calibration accuracy, and its NIST traceability, were revisited by Tom Pagano in a 2008 SPIE paper
- At Tom's request, Ken Overoye (BAE) and Margie Weiler (retired from BAE, now with ATK) are working on an AIRS absolute calibration paper to be submitted to a peer-reviewed journal
- Margie has extended work by Tom which revises and improves the analysis of the pre-launch data, resulting in an improved set of calibration coefficients

Radiometric changes (cont.)

Atmospheric Infrared Sounder

Improvements to the pre-launch analysis

- More careful selection of pre-launch test data
- Fit nadir and -40° data simultaneously to obtain all parameters together
- Smoothing of space look data made consistent with the present PGE
- A-side and B-side detectors were treated separately and then recombined at the end to produce a parameter set specific to each AIRS on-board weight table
- Fits to the polarization parameter were retained—no model adjustments
- Result is a new fit having lower residuals leading to more accurate radiances, especially off-nadir

Jet Propulsion Laboratory 6 L1C New Coefficients Have Improved Residuals Pasadena, California

Nadir

Atmospheric Infrared Sounder

PGE V5

Copyright 2009
California Institute of Technology
Government sponsorship acknowledged

V6 L1C

L1 V6 Changes Overview NASA Sounder Science Meeting October 13–16, 2009, Greenbelt MD

-40°

Spectral Calibration Rationale

- Frequency shifts are very small, but vary on several time scales from orbital to the whole mission
 - Irrelevant for weather forecasting
 - Not important for window channels
 - Significant for climate research for channels on the slopes of lines
- The next slide (from George Aumann) shows the typical magnitude of the shifts for channels on slopes of lines
 - Two channels on opposite slopes of a CO₂ line near 790 cm⁻¹

AIRS Spectral Shift Example L1B

Same Example For IASI L1C

Atmospheric Infrared Sounder

The Spectral Calibration Challenge

 Produce a Level 1C product which will make George's plot on slide #8 a flat line

Algorithms

- Over the last year we have been experimenting with several different algorithms to determine the spectral shift amounts
 - Find correlations between shifts and AIRS engineering parameters
 - We could not find any combination of instrument parameters which worked reliably
 - Measure the shifts dynamically using upwelling radiances (Gaiser/Deen)
 - Use varying gain ratios (assumes image motion along a diagonal so that the shifts in the dispersed and crossdispersed directions are related) (Manning)
 - Determine the past history of the shifts using (obs calc) with ECMWF atmospheric states and extend into the future using fits to an analytic expression (Strow/ Hannon)

Results

- Evan Manning combined the upwelling radiance technique with the gain ratio technique into a single hybrid algorithm
- This hybrid method and the Strow modeling approach give similar results to first order, but differ noticeably when looked at in more detail
- Present plan— go with Strow's model

Level 1C

- The new Level 1C PGE will:
 - Input radiances from the unmodified L1B
 - Adjust radiances for the changed radiometric calibration coefficients (Pagano & Weiler)
 - Calculate spectral shifts based on time of observation (model by Larrabee Strow)
 - Gap fill and "clean" the spectra (using software developed by Yibo Jiang and described in talks in previous meetings)
 - Resample the spectra to a fixed frequency grid (software also developed by Jiang)

New Level 1 Data Flow

Atmospheric Infrared Sounder

Level 1A

Engineering parameters (EU)

Raw counts (DN)

Level 1B

V5 Calibrated

radiances

Level 1C

V6 calibrated radiances, determine time-dependent frequencies, fill gaps, clean, put on fixed grid

Copyright 2009
California Institute of Technology
Government sponsorship acknowledged

Level 2 Temp, q, etc.

L1C subset (determine freqs)

L1 V6 Changes Overview NASA Sounder Science Meeting October 13–16, 2009, Greenbelt MD

Standalone Programs

- Frequency shift look up (Strow model)
- Frequency shift determination alternate
 - The hybrid Gaiser/Deen/Manning algorithm to determine shifts dynamically from upwelling radiances
 - Will be used as a check at JPL on the Strow model being used in the PGE at the GES DISC
- V5 to V6 radiance converter
 - Can be used to convert V5 radiances to the new V6 radiances without running Level 1C